Invariant meromorphic functions on Stein spaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Meromorphic Functions with Two Completely Invariant Domains

We show that if a meromorphic function has two completely invariant Fatou components and only finitely many critical and asymptotic values, then its Julia set is a Jordan curve. However, even if both domains are attracting basins, the Julia set need not be a quasicircle. We also show that all critical and asymptotic values are contained in the two completely invariant components. This need not ...

متن کامل

On a Metric on Translation Invariant Spaces

In this paper we de ne a metric on the collection of all translation invarinat spaces on a locally compact abelian group and we study some properties of the metric space.

متن کامل

Shift-invariant spaces from rotation-covariant functions

We consider shift-invariant multiresolution spaces generated by rotation-covariant functions ρ in R2. To construct corresponding scaling and wavelet functions, ρ has to be localized with an appropriate multiplier, such that the localized version is an element of L2(R2). We consider several classes of multipliers and show a new method to improve regularity and decay properties of the correspondi...

متن کامل

Invariant Means on Spaces of Continuous or Measurable Functions ( )

1. Introduction. Invariant means on spaces of functions have been studied by von Neumann [ 7], Banach [ 2], Day [ 4], [5] and others. Day's Amenable semigroups [5] presents a comprehensive summary of the earlier work and many new results. Let 2 be an abstract group or semigroup and ret (2) the Banach space of all bounded real-valued functions on 2 with the supremum norm. A mean on rei(2) is a p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales de l’institut Fourier

سال: 2012

ISSN: 0373-0956,1777-5310

DOI: 10.5802/aif.2740